Learning Character-level Compositionality with Visual Features

نویسندگان

  • Frederick Liu
  • Han Lu
  • Chieh Lo
  • Graham Neubig
چکیده

Previous work has modeled the compositionality of words by creating characterlevel models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the meaning of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of Visual Events using Spatio-Temporal Information of the Video Signal

Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...

متن کامل

Identification of the underlying factors affecting information seeking behavior of users interacting with the visual search option in EBSCO: a grounded theory study

Background and Aim: Information seeking is interactive behavior of searcher with information systems and this active interaction occurs in a real environment known as background or context. This study investigated the factors influencing the formation of layers of context and their impact on the interaction of the user with search option dialoge in EBSCO database. Method: Data from 28 semi-stru...

متن کامل

One-shot learning by inverting a compositional causal process

People can learn a new visual class from just one example, yet machine learning algorithms typically require hundreds or thousands of examples to tackle the same problems. Here we present a Hierarchical Bayesian model based on compositionality and causality that can learn a wide range of natural (although simple) visual concepts, generalizing in human-like ways from just one image. We evaluated...

متن کامل

Adaptive Joint Learning of Compositional and Non-Compositional Phrase Embeddings

We present a novel method for jointly learning compositional and noncompositional phrase embeddings by adaptively weighting both types of embeddings using a compositionality scoring function. The scoring function is used to quantify the level of compositionality of each phrase, and the parameters of the function are jointly optimized with the objective for learning phrase embeddings. In experim...

متن کامل

May Testing, Non-interference, and Compositionality

This paper uses CSP to introduce a characterisation of non interference in terms of the deductions that may be made about high level processes by low level tests May testing yields classic noninference and has a concise formulation in CSP It is preserved by a wider range of composition oper ators than are normally considered in the context of non interference It turns out that the extensive lis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017